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Inflation Without Potential
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Due to the importance of inflation, considerable effort has gone into developing
different inflationary scenarios. In most of them inflation is driven by a self-
interacting scalar field. Here we discuss an alternative way to implement an
inflationary stage provided by noncanonical kinetic terms in the action for the
scalar field.

1. INTRODUCTION

The homogeneity and flatness of the observable universe naturally follow
from inflation, a stage of accelerated expansion of the universe (see, for
instance, ref. 1). Moreover, inflation is the only way to explain the origin of
the small density fluctuations which led to the observable structure in the
universe. For these and many other reasons inflation has become a cornerstone
of modern cosmology.

Due to the importance of inflation, considerable effort has gone into
developing different inflationary scenarios. In most of them inflation is driven
by a self-interacting scalar field. The most general Lagrangian in this case is

+ 5 1–2 gmnw,mw,n 2 V(w) (1)

There are many different models of this type and all of them rely on some
sort of “slow-roll” regime during which the scalar field slowly rolls down its
potential (see, however, ref. 2). Because the speed of the field is proportional to
the slope of the potential, slow-roll inflationary scenarios work only if the
corresponding potential is sufficiently “flat.”

Of course, the choice of the Lagrangian cannot be arbitrary. Ultimately,
the Lagrangian responsible for inflation should stem from high-energy phys-
ics. Some of the first inflationary models appeared, for instance, in the context
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of grand unified theories of gauge interactions, but these scenarios lost their
appeal with further developments in the subject. Today many particle physi-
cists consider string theory as a candidate for a truly unified theory of
gravitation and gauge interactions. Therefore, it would be natural to look for
inflation in this framework. Actually, string theory predicts the existence of
a whole set of scalar fields known as moduli. However, it is difficult to
implement inflation with such scalar fields because they remain massless to
all orders in perturbation theory and, even if one includes nonperturbative
effects, the nonperturbative potentials are not flat enough [4]. There is never-
theless an alternative way to implement an inflationary stage here provided
by noncanonical kinetic terms in the action for the scalar field. Actually, the
low-energy effective action of string theory contains such terms for the moduli
fields. In particular, its scalar sector takes generically the form

+eff 5 2Bg(f)R 2 Bf(f)(¹f)2 1 a8B(1)
f (f)(¹f)4 1 ??? (2)

As we are going to show, terms like these may lead to a stage of inflation,
k-inflation [5]. Let us also point out that even in a nonstringy context k-
inflation may be attractive; it provides an in principle totally different way
of implement inflation, keeping at the same time its main virtues.

2. k-INFLATION

Consider an effective action containing nonstandard kinetic terms. After
conformal transformation if necessary, such an action can be always written as

S 5 # d 4x !2gF2
R

16pG
1 p(w, X )G (3)

The variable X is an abbreviation for the “kinetic term”

X 5 1–2 (¹w)2 (4)

and p is a general function of w and X. Because we want to address whether
inflation without potential is possible, we assume that p can be expanded for
small X as

p(w, X ) 5 K(w)X 1 L(w)X 2 1 ??? (5)

A scalar field described by (3) mimics the behavior of a perfect fluid with
energy-momentum tensor

Tm
n 5 (ε 1 p)umun 2 pdm

n (6)

where the Lagrangian p(w, X ) itself plays the role of the pressure, the energy
density is given in terms of p by
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ε 5 ε(w, X ) 5 2Xp,X 2 p (7)

and the four-velocity is

um 5
¹mw

!2X
(8)

The equation of motion of the field can be expressed in terms of the ε and
p defined above as ε̇ 5 23H(ε 1 p). We consider only a flat universe and
adopt units such that 8pG/3 5 1. Then, energy density and Hubble constant
H are related by the Friedmann equation H 2 5 ε. In an expanding universe
both equations of motion can be combined into the single “master” equation

ε̇ 5 23!ε(ε 1 p) (9)

2.1. Basic Idea of k-Inflation

To get an idea of how nonstandard kinetic terms may support inflation,
consider first for simplicity a w-independent Lagrangian, that is,

p 5 p(X ) (10)

The energy density in this case is also a function of X alone,

ε 5 ε(X ) 5 2Xp,X 2 p (11)

so that one can draw a parametric plot in the (ε, p) plane which describes
the equation of state p(ε) of the field. Such a plot, for generic p, is shown
in Fig. 1.

The crucial observation is that if there is a point X0 where p,X(X0) 5 0
(such points lie on the line p 5 2ε in the plot), then X 5 X0 5 const is a
de Sitter inflationary solution of the master equation (9). Moreover, as can
be read out from Fig. 1, by taking into account Eq. (9), these points correspond
to attractors of the cosmological evolution of the field.

There are, however, two major drawbacks of a stage of pure de Sitter
inflation: There is no exit from inflation and the cosmological perturbations
are ill defined (the propagation speed of the perturbations is zero). These
drawbacks can be easily avoided by relaxing one of our assumptions, namely,
the w independence of p.

2.2. Slow-Roll k-Inflation

Consider now a w-dependent p, but in order not to spoil the inflationary
behavior we have discussed above, assume this w dependence to be “mild”
(later we shall clearly define what we mean). To simplify the consideration
we restrict ourselves to the Lagrangian
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Fig. 1. Equation of state for a rather general kinetic Lagrangian p(X ). The evolution for
expanding, flat cosmologies proceeds along the indicated arrows. The shaded region (ε , 0)
is excluded. Except for the origin and the point above it on the vertical axis, the attractors of
the evolution are inflationary fixed points with p 5 2ε. Along the dashed stretches labeled
by u, solutions are absolutely unstable (c2

s , 0; see Section 3).

p 5 2K(w)X 1 X 2 (12)

although the analysis is applicable to more general Lagrangians. If K does
not depend on w, a point X0 where

p,X(X0) 5 0 (13)

would be an inflationary solution of the equations of motion. For a w-
dependent p we can only expect this point to be an approximate lowest order
solution of the equations of motion. Note that the solution of (13) for a
Lagrangian (12) is

X0 5 1–2 K(w) (14)

which of course is not constant, since K depends on w, and w changes in
time according to
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ẇ 5 6!K (15)

Consequently, the energy density also changes with time,

ε0 [ ε(X0) 5 1–4 K 2(w) (16)

In spite of this fact, if the relative change of the energy density during a
Hubble time is small, then (14) is a good approximate solution of the equation
of motion (9). Using Eq. (15) and the lowest order solution (14), we can
express this criterion as

(1/H )ε̇
ε

5 23
ε 1 p

ε
'

K 8

K 3/2 ¿ 1 (17)

The last requirement is the equivalent of the “slow-roll condition” on the
potential in the usual inflationary scenarios. However, condition (17) is satis-
fied by a much wider class of functions, such as the following:

1. K } wa as w → ` for a . 22, or as w → 0 for a , 22.
2. K → limit with K 8 → 0 as w → `.
3. K } ew, K } eew

, . . . , as w → `.

From (17) it also follows, as in the usual models, that during slow-roll
k-inflation the universe is close to (but not in) a de Sitter stage. For the
functions listed above, condition (17) is satisfied only for certain values of
the field. Hence, again in close analogy to the usual models, when during
its cosmological evolution the field reaches a region where (17) is violated,
inflation naturally ends. A phase diagram showing the whole evolution of
the field is shown in Fig. 2.

2.3. Power-Law k-Inflation

The function K } 1/w2 does not belong to the class of functions (17).
For this K it is possible, however, to find an exact solution of the equations of
motion. In fact, one can find solutions for the far more general set of functions

p(w, X ) 5
g(X )
w2 (18)

Note that the Lagrangian (12) can be cast in this form after a field redefinition.
These kinds of Lagrangians also appear for instance from a tree-level low-
energy effective string action containing nonstandard kinetic terms by the
field redefinition w } e2f/2.

It is easy to verify that if X0 satisfies the equation
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Fig. 2. Shematic phase diagram of “slow-roll” k-inflation. Trajectories approach the inflationary
attractor, which does not coincide with the de Sitter line ε 1 p 5 0. Around the point where
the slow-roll condition is violated, the solutions leave the inflationary stage and then smoothly
approach the vacuum ẇ 5 0.

19
4

g2
,X 2 g,X 1

g
2X2

X0

5 0 (19)

and g,X(X0) . 0, then X 5 X0 5 const is a solution of the equation of motion
(9) such that

a } tb, where b 5 3–2 g,X (X0) (20)

For b . 1 the last solution describes the so-called power-law inflation. During
power-law inflation, the expansion of the universe is indeed accelerated, ä .
0, and the energy density gradually decreases as a22/b. Notice that in the
limit b → ` one recovers de Sitter inflation. An exit from such power-law
inflation can be easily arranged if the 1/w2 factor changes its w dependence
in some range of values of w.

2.4. Pole-Like k-Inflation

The same class of Lagrangians (18) also allows a quite different type
of inflation. Namely, if X0 satisfies (19) and g(X0) , 0, then X 5 X0 5 const
is a solution of the equation of motion (9) such that
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a } (2t)b, where b 5 3–2 g,X (X0) , 0 (21)

Time runs in this case from 2` to 0, and solution (21) describes pole-
like inflation. During pole-like inflation, the energy density and the Hubble
constant increase, and the universe becomes singular in a finite time. In
contrast to power-law k-inflation, it seems that it is impossible to exit such
an inflationary stage.

During power-law and pole-like inflation, the behavior of the scalar
field is very different. In both cases the kinetic term X 5 X0 is constant, so
the energy density is proportional to 1/w2. However, during power-law infla-
tion the energy density decreases, and therefore the scalar field w drifts away
from the singular point w 5 0. On the other side, the energy density during
pole-like inflation increases and in this case the field w approaches and
reaches the singular point w 5 0 in a finite time.

3. PERTURBATIONS

Initial inhomogeneities present in the universe before inflation are
stretched by the accelerated expansion of the universe and soon become
irrelevant in presently observable scales. On the other hand, the new inhomo-
geneities being generated during inflation from inevitable quantum fluctua-
tions finally become responsible for the observable structure in the universe.
Therefore, it is important to analyze the behavior of perturbations during k-
inflation [6].

Let us consider small inhomogeneities of the scalar field, that is,

w(t,
›

x ) 5 w0(t) 1 dw(t,
›

x ) (22)

When dealing with perturbations in general relativity one should bear in mind
that because the energy density and pressure of the constituents of the universe
determine its geometry, perturbations in the metric also should be included.
The metric of a universe with small inhomogeneities can be written in confor-
mal Newtonian gauge as

ds2 5 (1 1 F) dt2 2 (1 2 2F)a2 d
›

x 2 (23)

The perturbations F and dw satisfy the linearized Einstein equations,
which read

1
a2 DF 2 3HḞ 2 3H 2F 5

3
2

dT 0
0 (24)

Ḟ 1 HF 5
3
2

dT 0
i (25)

and where the perturbations of the energy-momentum tensor are given by
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dT 0
0 5

e 1 p
c2

s
F1dw

ẇ 2
?G 2 3H

dw
ẇ

(26)

dT 0
i 5 (e 1 p)

dw
ẇ

(27)

We have introduced here the squared “speed of sound” defined by

c2
s 5 p,X /ε,X (28)

which, as we will see, describes the local speed of propagation of the perturba-
tions. Observe that the ratio p/ε which defines the expansion rate of the
universe contains only up to the first X-derivative of p. On the other hand,
the speed of sound contains a second X-derivative of p. Thus, p/ε and c2

s can
be independently arranged to take a priori given values by an appropriate
choice of the Lagrangian. In contrast, in the usual inflationary models where
p 5 X 2 V(w) the speed of sound is always equal to one.

The coupled system of differential equations (24), (25) can be simplified
by introducing the two new variables z and j defined via

F 5
3
2

H
a

j and
dw
ẇ

5
z
H

2
3
2a

j (29)

In terms of these new variables, Eqs. (24), (25) reduce to

j̇ 5
a(ε 1 p)

H 2 z and ż 5
c2

sH 2

a3(ε 1 p)
Dj (30)

The variable z is useful because its value at the time of recombination is
equal, up to a factor of order one, to the amplitude of the temperature
fluctuations in the cosmic microwave background radiation on large angu-
lar scales,

dT
T

5 O(1) ? z.rec (31)

Furthermore, the appropriate variable for canonical quantization v is propor-
tional to z,

v 5 zz, where z 5
a
cs
11 1

p
ε2

1/2

(32)

The equation of motion of v can be deduced from Eqs. (30). It reads

v9 2 c2
sDv 2

z9
z

v 5 0 (33)

where a prime means derivative with respect to conformal time h 5 * dt/a.
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Notice that c2
s plays indeed the role of a propagation speed. Strictly, the last

interpretation is right only if c2
s is positive. If not, perturbations grow with

time instead of oscillating, and the background solutions become absolutely
unstable. Thus, stability requires c2

s to be positive.
During slow-roll k-inflation cs and 1 1 p/ε change much more slowly

than the scale factor. Thus, from (33) we have z9/z ' 2H 2a2, where we have
used (17). If we decompose the variable v into Fourier modes vk , the equation
satisfied by each mode is decoupled from the others. Each Fourier mode vk

describes the field fluctuations in a particular comoving length scale l '
1/k. For modes “inside the sound horizon” (a/k ¿ cs /H ), solutions are
oscillatory. In this short-wave limit, the solution which describes the vacuum,
the state of minimal fluctuations of the field, corresponds to

vk '
e2ikcsh

(2csk)1/2 (34)

Notice that because of the fast change in the scale factor, modes which
are initially inside the sound horizon soon get “out of the sound horizon”
(a/k À cs /H ), so that we can use the short-wave vacuum solution as an
“initial condition” to compute the amplitude of the long-wave modes. For
these modes, nondecaying solutions are proportional to z. The constant of
proportionality is found by matching this solution with the vacuum one at
“sound horizon crossing” (csk 5 aH ). One finds then that the quantity which
characterizes the squared amplitude of the temperature fluctuations, the power
spectrum 3z

k, is given on large scales by

3z
k [

1
2p2 .zk.2k3 5

1
4p2

ε
εPl

1
cs(1 1 p/ε)Z

csk'aH

(35)

where, as indicated, the appropriate quantities should be evaluated at the
moment of sound horizon crossing. Observe that the speed of sound is small
during slow-roll k-inflation (at least in the model in consideration), whereas
in power-law inflation there is no a priori restriction on its value.

An important consequence of the previous formula is the fact that the
ratio of the power spectrum of gravitational waves 3h to the power spectrum
of the scalar variable z is given by

3h

3z 5 28csnT (36)

where the tensor spectral index nT describes the slope of the spectrum of
gravitational waves. Hence, by measuring nT , 3h, and 3z, one can determine
in principle cs. In standard inflation cs is always one, but in k-inflation this
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restriction does not hold. Thus, k-inflation is phenomenologically distinguish-
able from usual inflation!
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